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Abstract
For a higher order linear ordinary differential operator P, its Stokes curve
bifurcates in general when it hits another turning point of P. This phenomenon
is most neatly understandable by taking into account Stokes curves emanating
from virtual turning points, together with those from ordinary turning points.
This understanding of the bifurcation of a Stokes curve plays an important
role in resolving a paradox recently found in a system of linear differential
equations associated with the fourth Painlevé equation.

PACS numbers: 02.30.Hq, 02.30.Oz

Introduction

The aim of this paper is to report an illuminating example encountered in the study of Painlevé
equations, which manifests the importance of virtual turning points [1] in WKB analysis
of higher order ordinary differential equations. The notion of virtual turning points, to be
recalled in definition 1.1, is closely tied up with the exact WKB analysis, that is, WKB analysis
based on the Borel resummation. Exact WKB analysis has been effectively applied to many
problems in mathematical physics [2], and we hope this paper may be counted as another
example that shows the importance of exact WKB analysis in mathematical physics. The
advantage in employing the Borel resummation method in WKB analysis certainly consists
of its efficiency in manipulating exponentially small terms, but still more important, from
the theoretical viewpoint, is the fact that the Borel transform PB

(
x, ∂−1

y ∂x

)
of an ordinary

differential operator P(x, η−1 d/dx) with a large parameter η is a partial differential (or
microdifferential) operator on (x, y)-space with y denoting the variable dual to η. Fortunately,
a new and powerful machinery called microlocal analysis [3] is available to analyse linear
partial differential (or, more generally, microdifferential) operators; it is particularly efficient
in analysing the singularity structure of solutions of the equation PBϕ = 0, and the notion

0305-4470/05/153317+20$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3317

http://dx.doi.org/10.1088/0305-4470/38/15/007
http://stacks.iop.org/ja/38/3317


3318 T Aoki et al

of virtual turning points originates from such analysis [1, 4, 5]. As we will see later in
definition 1.1, the most important keyword in our analysis is a bicharacteristic curve associated
with the Borel transform PB of the operator P in question; microlocal analysis guarantees that
it is the most ‘elementary’ carrier of singularities of solutions of linear partial differential
equations in general [3]. Note that Voros [6] uses the corresponding result for the Tricomi-
type operator in constructing his theory of exact WKB analysis for differential operators
of the second order. As the so-called new Stokes curve for a higher order operator [7] is
nothing but an ordinary Stokes curve emanating from a virtual turning point, the importance
of the notion of a virtual turning point is practically evident. Actually it plays an important
role in computing the transition probabilities for the non-adiabatic transition problems of the
Landau–Zener type [4]. Here in this paper we present a decisive and illuminating evidence
of the theoretical importance of the notion in a concrete example encountered in the study
of the fourth Painlevé equation written in a symmetric form [8]. In order to facilitate the
reader’s understanding of the implication of the example, we first recall some basic facts in the
exact WKB analysis of the Painlevé equations which are immediately related to the example.
(Although we discuss below equations related to the fourth Painlevé equation, we can discuss
all (PJ )(J = I, II, . . . , VI) with appropriate modifications. See [9] for details.)

Let us start with the following Schrödinger equation (SLIV):(
− ∂2

∂x2
+ η2QIV(x, t, η)

)
ψ(x, t, η) = 0, (SLIV)

where

QIV = α

x2
+ β +

(
x + 2t

4

)2

+
KIV

2x
− η−1 λν

x(x − λ)
+ η−2 3

4(x − λ)2
, (0.1)

with α, β constants and the Hamiltonian KIV given by

2λ

[
ν2 − η−1 ν

λ
−

(
α

λ2
+ β +

(
x + 2t

4

)2
)]

. (0.2)

Here λ and ν are functions of t and η.
We next consider its deformation equation (DIV):

∂ψ

∂t
= A

∂ψ

∂x
− 1

2

∂A

∂x
ψ, (DIV)

where

A = 2x

x − λ
. (0.3)

Then the compatibility condition of (SLIV) and (DIV) can be written in a Hamiltonian form
[10] as follows:


dλ

dt
= η

∂KIV

∂ν
dν

dt
= −η

∂KIV

∂λ
.

(0.4)

The fourth Painlevé equation (PIV) given in (0.5) then follows from (0.4):

d2λ

dt2
= 1

2λ

(
dλ

dt

)2

− 2

λ
+ η2

[
3

2
λ3 + 4tλ2 +(2t2 + 8β)λ − 8α

λ

]
. (0.5)
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Figure 1. The degeneracy of the Stokes geometry of (SLIV) when the parameter t lies in the
Stokes curve of (PIV) (with the choice of parameters (t, α, β) = (4, 1, 1)).

Substituting into the coefficients of (SLIV) a particular solution (λ, ν) of (0.4) that has the
form

λ = λ0(t) + η−1λ1(t) + η−2λ2(t) + · · · (0.6)

ν = ν0(t) + η−1ν1(t) + η−2ν2(t) + · · · , (0.7)

we obtain the expansion of QIV in η−1 and we let Q0 = QIV,0 denote its top degree (i.e.,
degree 0) part. We can then consider the Stokes geometry of (SLIV) by using Q0. The Stokes
geometry, i.e., the collection of turning points and Stokes curves, is then drawn in the x-space,
and it depends on the parameter t. Now, when the parameter t lies on a Stokes curve for (PIV),
we observe an interesting degeneracy of the Stokes geometry of (SLIV) in the following sense:

A double turning point d = d(t) of(SLIV) and a simple turning
point s = s(t) of(SLIV) are connected by a Stokes segment of (0.8)
(SLIV). (Cf figure 1.)

A critically important role is played by the two turning points d and s which are relevant to
this degeneracy of the Stokes geometry of (SLIV) in the exact WKB analysis of the Painlevé
transcendents [9]. In particular, the integral

φ(t) =
∫ s(t)

d(t)

√
Q0(x, t) dx (0.9)

is an essential ingredient in describing instanton-type solutions of (0.4), which are used to
describe the connection formula for the Painlevé transcendents [9, 11]. We also note that the
Stokes curve for (PIV) is given by

Im φ(t) = 0. (0.10)

See [9] for details.
Now, if we study the fourth Painlevé equation written in a symmetric form (cf (NY )2

in section 2) with the pair of ‘Schrödinger’ equation (2.3) and its deformation equation (2.4)
given by Noumi and Yamada [12], we encounter the following intriguing situation [13]:

Fact A (found with the help of a computer). When the parameter t lies in some portion σ1

of a Stokes curve for the fourth Painlevé equation (NY )2, there is no pair of turning points of
the ‘Schrödinger’ equation (2.3) that are connected by a Stokes segment of (2.3). At the same
time, if the parameter t lies in another portion σ0 of the same Stokes curve for the Painlevé
equation, we observe a pair of turning points d and s1 of (2.3) which are connected by a Stokes
segment of (2.3).

The situation is visualized by figure 2 concretely. We have included in the figure another
nearby turning point s2 for the later reference. The figure is drawn with the choice of parameters
(α0, α1) = (1.0 + 0.6

√−1, 0.2 − 0.1
√−1).
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Figure 2. Configuration of Stokes curves of (2.3) for (i) t = t1 = −1.5783 − 0.4130
√−1 in σ1

and (ii) t = t0 = −1.6104 − 0.2268
√−1 in σ0.
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(ii)

Figure 3. Stokes geometry of (2.3) with virtual turning points v1 and v2 added. Figure (i) is for
t = t1 and figure (ii) is for t = t0.

This seemingly paradoxical situation might make the reader suspect that the ‘Schrödinger’
equation (2.3), which is of size 3 × 3, not 2 × 2, is not suited for WKB analysis. Indeed, the
suspicion is reasonable if we use ordinary WKB analysis. However, we are armed with the
exact WKB analysis; in particular, we have virtual turning points in our toolbox. If we add
virtual turning points in figure 2, marvellous harmony is recovered:

Fact B (found with the help of a computer in [13]). The double turning point d (resp.,
simple turning point s1) is connected with a virtual turning point v1 (resp., v2) at t = t1.

This fact B is visualized by figure 3.
The comparison of fact A and fact B is more than enough to convince the reader that

the notorious difficulty in the global asymptotic analysis of higher order differential equations
(e.g. [14 p 176]) originates in the lack of the notion of virtual turning points in the traditional
WKB analysis.
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In order to understand the mechanism that switches the counterpart of the turning point d
(resp., s1) from an ordinary turning point s1 (resp., d) to a virtual turning point v1 (resp., v2),
we study in section 1 the relevance of a virtual turning point to the bifurcation phenomenon
of a Stokes curve that is observed when it hits a simple turning point. In section 2, we discuss
concretely how the mechanism analysed in section 1 is related to the change of configuration
of turning points and Stokes curves of (2.3), which is displayed in figure 3. In appendix A
we prove that the apparently miraculous situation observed in figure 8, i.e., one Stokes curve
passing through two crossing points of Stokes curves simultaneously, is actually a phenomenon
that occurs generically in our context. In appendix B we show an analytic counterpart of the
geometric result discussed in section 2. Logically speaking, the contents of appendices A and
B are not needed for the understanding of the main text of this paper. We hope, however, they
will give the reader some insight into the analytic background of the subject discussed in this
paper.

1. The relevance of a virtual turning point to the bifurcation phenomenon of a Stokes
curve

To fix the notation and terminologies, we first recall the definition of a turning point, both
ordinary and virtual, and a Stokes curve for an mth (m � 3) order ordinary differential operator
P = P(x, η−1 d/dx, η−1) with a large parameter η that is of the form

P0(x, η−1 d/dx) + η−1P1(x, η−1 d/dx) + η−2P2(x, η−1 d/dx) + · · · . (1.1)

For such an operator P, a solution ζ(x) of the equation

P0(x, ζ ) = 0 (1.2)

is called a characteristic root of P. When we deal with a matrix equation of the form(
η−1 d

dx
− A(x, η)

)
ψ = 0, (1.3)

where A is an m × m matrix (m � 3) of the form

A0(x) + η−1A1(x) + η−2A2(x) + · · · , (1.4)

we use det(ζ −A0(x)) as P0(x, ζ ). In defining a virtual turning point we make use of a classical
notion (e.g. [15 p 558 ff]) of bicharacteristic strip of the Borel transform PB

(
x, ∂−1

y ∂x, ∂
−1
y

)
of P(x, η−1 d/dx, η−1). In what follows we identify η with the symbol of the operator
∂y [3]. A bicharacteristic strip is, by definition, a solution (x(s), y(s), ξ(s), η(s)) of the
following Hamilton–Jacobi equation determined in terms of the principal symbol of PB , that
is, P0 = P0(x, η−1ξ):



dx

ds
= ∂P0

∂ξ

dy

ds
= ∂P0

∂η

dξ

ds
= −∂P0

∂x
dη

ds
= −∂P0

∂y
(= 0)

P0(x(s), η(s)−1ξ(s)) = 0,

(1.5)

and it defines a curve in the cotangent bundle T ∗
C

2
(x,y). The projection of a bicharacteristic

strip to the base manifold C
2
(x,y) is called a bicharacteristic curve. As is seen in definition 1.1,
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s1

s2

Figure 4. Bifurcation of a Stokes curve.

the notion of a bicharacteristic curve is essentially used in the definition of a virtual turning
point.

Definition 1.1. (i) When two characteristic roots ζj (x) and ζk(x) coalesce at x = a, the point
a is called an ordinary turning point. If necessary, we put a sign (j, k) to a to indicate that it
is determined by a pair of characteristic roots ζj and ζk . According as the discriminant of P0

has a simple or double zero at x = a, a is called a simple or double ordinary turning point.
If there is no fear of confusions the adjective ‘ordinary’ is omitted.

(ii) When a bicharacteristic curve of P crosses itself at a point (x0, y0), the point x0 is
called a virtual turning point [1, 5]. When the crossing point is determined by a pair of
Hamiltonians (η−1ξ − ζj (x)) and (η−1ξ − ζk(x)), we put a sign (j, k) to the virtual turning
point.

(iii) An integral curve of the direction field

Im(ζj (x) − ζk(x)) dx = 0 (1.6)

that emanates from a turning point a, either ordinary or virtual, with the sign (j, k) is called
a Stokes curve of type (j, k). The portion of a Stokes curve where

Re
∫ x

a

(ζj − ζk) dx > 0 (1.7)

holds is labelled as (j > k), or simply j > k. A Stokes curve that emanates from a virtual
turning point is called a new Stokes curve, if necessary.

In what follows we freely use these terminologies and notation. Let us now consider
the situation described in figure 4, that is, the situation where a Stokes curve emanating from
a turning point s1 with a sign (j, k) = (1, 2) hits another simple ordinary turning point s2

with a sign (2, 3). Here, using the assumption m � 3, we have chosen mutually distinct
characteristic roots ζj (x)(j = 1, 2, 3) of the operator P in question. Since x = s2 is a simple
turning point where ζ2(x) and ζ3(x) coalesce, ζ2(x) (and ζ3(x) also) has a square-root-type
singularity there. As the Stokes curve emanating from s1 is a solution curve of the direction
field

Im(ζ1(x) − ζ2(x)) dx = 0, (1.8)

it bifurcates at x = s2, forming the contact of degree 3/2.
If the operator P does not contain any parameter other than η, one might be content to

regard this bifurcation just as one of the pathologies which analysis of higher order equation
presents. Then the reasoning would be stopped there. However, if the operator P depends
on an auxiliary parameter t, it is natural to consider how the configuration of Stokes curves
changes as the parameter t changes. Then it is more reasonable to take into account the Stokes
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s1

s2

Figure 5. Configuration of Stokes curves for t = t2.

s1 s2

Figure 6. Configuration of Stokes curves for t = t3.

s1

s2

v

Figure 7. Figure 5 with a virtual turning point added.

curve emanating from x = s2(t), in addition to the Stokes curve emanating from s1(t). To
fix the situation, let us suppose that s1(t) is a simple ordinary turning point. For the sake of
definiteness we assign the dominance relation symbols (1 > 2) etc as in figures 5 and 6, which
respectively describe the configuration of Stokes curves at t = t2 and t = t3. Here the points
t = t2 and t = t3 are chosen sufficiently close to t = t1, at which the configuration of Stokes
curves is that given in figure 4, that is, the Stokes curve emanating from s1(t1) hits the simple
ordinary turning point s2(t1). In the situation described in figure 5, we can locate, as shown
in figure 7, a virtual turning point v(t2) with sign (1, 3) such that the Stokes curve emanating



3324 T Aoki et al

s1 s2

v

Figure 8. Figure 6 with the virtual turning point v(t3) added.

s1

s2

v

Figure 9. Figure 4 with the virtual turning point v(t1) added.

from v(t2) passes through the crossing point of the Stokes curve emanating from s1(t2) and
that from s2(t2) [5, 13, 16].

The configuration of the Stokes curves at t = t3 then becomes as in figure 8.
Since the Stokes curve emanating from v(t1) is with sign (1, 3), it also bifurcates at

x = s2(t1) because of the square-root-type singularity that ζ3(x) contains. The resulting
configuration is given in figure 9.

Remark 1.1. It is worth emphasizing that the pattern of the change of configuration of Stokes
curves observed above is a universal one in our context, if t2 and t3 are sufficiently close to t1.
See appendix A for details.

Comparison of the pair O of figures 5 and 6 and the pair A of figures 7 and 8 is instructive:
in the pair O where only ordinary turning points are taken into account, the direction of the
Stokes curve emanating from x = s1(t) abruptly changes as t crosses t = t1, while, in the pair
A where a virtual turning point and a Stokes curve emanating from it are added, the totality
of directions of Stokes curves changes smoothly near t = t1. The interest of this comparison
is enhanced if one notes the fact that the relative location of the Stokes curve emanating
from s1(t) and that from v(t) are interchanged on the right of their crossing points. Thus we
understand that the bifurcation of a Stokes curve is naturally coupled with the addition of a
Stokes curve emanating from a virtual turning point; it is not an isolated pathology.
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2. A pathology related to the Noumi–Yamada system and its resolution by the
introduction of virtual turning points

To begin with, let us recall the explicit form of the Noumi–Yamada system (NY )2 and its
underlying Lax pair of ‘Schrödinger’ equation (2.3) and its deformation equation (2.4).

η−1 dfj

dt
= fj (fj+1 − fj+2) + αj (j = 0, 1, 2), (NY )2

where

fj = fj−3 (j = 3, 4) (2.1)

and αj (j = 0, 1, 2) are constants satisfying

α0 + α1 + α2 = η−1, (2.2)

−η−1x
d

dx


ψ0

ψ1

ψ2


 =


(2α1 + α2)/3 f1 1

x (−α1 + α2)/3 f2

xf0 x −(α1 + 2α2)/3





ψ0

ψ1

ψ2


 , (2.3)

η−1 ∂

∂t


ψ0

ψ1

ψ2


 =


f2 − t/2 −1 0

0 f0 − t/2 −1
−x 0 f1 − t/2





ψ0

ψ1

ψ2


 . (2.4)

Here a Lax pair means, in general, a pair of linear differential equations whose compatibility
condition is the starting nonlinear equation, i.e., (NY )2 in our case.

Remark 2.1. The Noumi–Yamada system (NY )2 discussed in this paper is the first member
of their hierarchy {(NY )l}l=2,3,4,... [12]. It gives a higher order version of the fourth Painlevé
equation (for l even) and the fifth Painlevé equation (for l odd). The system (NY )2 coincides
with the fourth Painlevé equation written in a symmetric form [8]. One can readily verify that
a component, say the first component, of the solution of (NY )2 satisfies

f ′′
1 = 1

2f1
(f ′

1)
2 + η2

(
3

2
f 3

1 − 2tf 2
1 +

(
t2

2
− α0 + α2

)
f1 − α2

1

2f1

)
, (2.5)

which reduces to the fourth Painlevé equation (0.5) by the scaling: t �→ √
2t, f1 �→ −λ/

√
2,

and the choice of parameters

α = (
α2

1 − η−2
)
/4, (2.6)

β = (−α0 + α2)/4. (2.7)

As we explained in the introduction, the fourth Painlevé equation (0.5) is associated with
a Lax pair consisting of (SLIV) and (DIV), and a characteristic degeneracy of the Stokes
geometry of (SLIV) is observed when the parameter t lies in the Stokes curve of (0.5).
(Cf figure 1.) Now, what if we consider another Lax pair (2.3) and (2.4) instead of the pair
(SLIV) and (DIV)? The computer-assisted study [13] has revealed a very intriguing fact A
stated in the introduction. We also noted in the introduction that the introduction of virtual
turning points brings back the harmony, as is stated in fact B. We now discuss how figures 3(i)
and 3(ii) are bridged by the result in section 1, i.e., the relevance of a virtual turning point and
the bifurcation phenomenon of a Stokes curve.

First of all, we note, by comparing figures 2(i) and 2(ii), the simple ordinary turning point
s2 should cross the Stokes curve connecting the turning points d and s1 as t moves from t1
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Figure 10. Configuration of Stokes curves of (2.3) when s2 meets another Stokes curve.

to t0 at, say t = t2; at t = t2 we find figure 10. Since s2 is a simple ordinary turning point,
bifurcation of Stokes curves is observed at t = t2. The result in section 1 tells us that the
bifurcation phenomenon is a counterpart of the addition of Stokes curves emanating from
virtual turning points. In our situation, we can immediately find two virtual turning points v1

and v2; v1 is related to the crossing of a Stokes curve emanating from s1 and that from s2,
and v2 is related to the crossing of a Stokes curve emanating from d and that from s2, as the
reader sees in figure 3(ii). In parenthesis, an interesting fact worth mentioning is that v1 and
v2 are connected by a Stokes curve at t = t0; this is not by accident. See appendix B for the
analytic proof. Now, at t = t2 the virtual turning point v1 is connected both with the double
turning point d and with the virtual turning point v2 thanks to the bifurcation of the Stokes
curve emanating from v1, and similarly the virtual turning point v2 is connected both with the
simple turning point s1 and with the virtual turning point v1. When t moves further to reach
t = t1, the interchange of relative location of the Stokes curve emanating from v1 and that
from s1 on the left of their crossing point switches the target of the Stokes curve (emanating
from v1) from v2 to the double turning point d. In parallel with this, the virtual turning point
v2 is connected with the simple turning point s1 by a Stokes curve at t = t1. Thus we obtain
figure 3(i); making a clear contrast with figure 2(i), the turning point d (resp., s1) is connected
with the turning point v1 (resp., v2). In conclusion, we find that the exact WKB analysis is
applicable to the 3 × 3 system (2.3) despite the fact that we cannot manipulate it with ordinary
WKB analysis.
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Appendix A. Coincidence of two Stokes curves

In this appendix we prove that the configuration observed in figure 8 in section 1, i.e., one
new Stokes curve passing through two crossing points of Stokes curves simultaneously, is a
phenomenon that is observed generically in our context.

In what follows (after placing a cut in an appropriate manner to define the characteristic
roots ζ2(x) and ζ3(x) as single-valued analytic functions), we discuss the problem in the
situation where a Stokes curve of type 1 > 2 crosses two Stokes curves emanating from a
simple ordinary turning point x = s with a sign (2, 3). The situation is visualized by figure 11,
where cj (j = 1, 2) denote crossing points of Stokes curves, a solid line designates a Stokes
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Figure 11. The situation where a Stokes curve crosses two Stokes curves emanating from a simple
turning point.

curve and a wiggly line designates a cut. We also let 0, 1 and 2 denote the closed portions
of the Stokes curves [c1, c2], [s, c1] and [s, c2], respectively. Here we assume that another
Stokes curve, designated by a dotted line in figure 11, passing through cj (j = 1, 2) runs as is
shown in figure 11, that is (one side of) it goes inside the triangle-like domain � surrounded
by k . Our problem is then to find a generic condition which guarantees that these two Stokes
curves passing through cj coincide.

To describe such a generic condition, let us introduce the following terminology: when

Im((ζ1(x) − ζ3(x))(ζ2(x) − ζ3(x))) �= 0 (A.1)

holds at a point x, we say that ‘the transversality condition is satisfied at x’. Note that (A.1) is
equivalent to

Im((ζ1(x) − ζ2(x))(ζ3(x) − ζ2(x))) �= 0 (A.2)

and also to

Im((ζ2(x) − ζ1(x))(ζ3(x) − ζ1(x))) �= 0, (A.3)

since

(ζ1 − ζ3)(ζ2 − ζ3) + (ζ1 − ζ2)(ζ3 − ζ2) = (ζ2 − ζ3)(ζ2 − ζ3) ∈ R (A.4)

etc hold. The transversality condition means that any two of the three direction fields
Im(ζ1(x) − ζ2(x)) dx = 0, Im(ζ2(x) − ζ3(x)) dx = 0 and Im(ζ3(x) − ζ1(x)) dx = 0 are
transversal to each other at a point x in question.

We now present a sufficient condition for the two Stokes curves passing through cj to
coincide. We first consider the case where the operator P in question contains no auxiliary
parameter other than η.

Proposition A.1. In the situation described in figure 11 we assume that, except at x = s,
neither ordinary turning points nor singular points exist in a neighbourhood of the triangle-like
closed domain � surrounded by k . We further assume that at some point x = x0 ∈ 0\{c1, c2}

Im((ζ1(x0) − ζ2(x0))(ζ1(x0) − ζ3(x0))) = 0 (A.5)

holds, while except at x = x0 and x = s the transversality condition is satisfied at every point
of k (k = 0, 1, 2). Then two Stokes curves, designated by dotted lines in figure 11, passing
through cj (j = 1, 2) coincide.

Proof. Let Fjk(x; x ′) and fjk(x) respectively denote
∫ x

x ′(ζj (z) − ζk(z)) dz and its derivative
ζj (x) − ζk(x). To prove proposition A.1, we mainly consider ImF13(x; c1) in what follows.
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First we note that ImF13(c2; c1) = 0 holds. As a matter of fact, since c1 and c2 (resp.,
s and c1, s and c2) are connected by a Stokes curve of type 1 > 2 (resp., type 2 > 3, type
3 > 2), we have

ImF12(c2; c1) = ImF23(c1; s) = ImF23(c2; s) = 0, (A.6)

and hence

ImF13(c2; c1) = ImF12(c2; c1) + ImF23(c2; c1)

= ImF12(c2; c1) + ImF23(c2; s) − ImF23(c1; s)

= 0. (A.7)

Now, if we write as x = u + iv and fjk = gjk + ihjk , the tangential differentiation along
a curve ImFjk(x; c) = const. (c: a fixed point) is given by gjk

∂
∂u

− hjk
∂
∂v

. Hence, using
the Cauchy–Riemann equation and the transversality assumption, we find that the tangential
derivative of ImF13(x; c1) along a Stokes curve 1, i.e. ImF23(x; s) = 0, should be(

g23
∂

∂u
− h23

∂

∂v

)
ImF13(x; c1) = Im

(
f23(x)

∂

∂x
F13(x; c1)

)
= Im((ζ2(x) − ζ3(x))(ζ1(x) − ζ3(x)))

�= 0 (A.8)

in the interior of 1. This implies that ImF13(x; c1) is a monotone function and never
vanishes on 1\{c1}. On the other hand, a similar computation and equality (A.7) tell us that
ImF13(x; c1) has one maximum (or minimum) at x = x0 and vanishes only at the endpoints
x = c1 and x = c2 on 0. These behaviors of ImF13(x; c1) on 1 and 0 entail that the Stokes
curve, which is defined by ImF13(x; c1) = 0, passing through c1 and going inside � should get
out of � through 2. (Note that the Stokes curve in question cannot stay inside � perpetually
by the assumption and it must get out of � through the boundary ∂� = 0 ∪ 1 ∪ 2.)

By a similar reasoning we also find that the Stokes curve passing through c2 and going
inside � should get out of � through 1. Hence, if the Stokes curve passing through c1 (resp.,
c2) is assumed to get out of � through 2\{c2} (resp., 1\{c1}), then the two Stokes curves
are forced to intersect inside �, which is a contradiction since these two curves are solution
curves of the same direction field Im(ζ1(x) − ζ3(x)) dx = 0. Thus the Stokes curve passing
through c1 must get out of � through c2. This completes the proof of proposition A.1. �

Next we discuss the situation which we encountered in figure 8, that is, the case where
the operator P contains an auxiliary parameter (‘deformation parameter’) t. (Consequently the
turning point x = s etc also depend on t; to manifest this dependence on t, we use the notation
x = s(t) in what follows.) As in section 1, let us assume that at t = t1 a Stokes curve of type
1 > 2 hits a simple ordinary turning point s(t1) and that at t = t3, a point sufficiently close to
t = t1, the configuration of Stokes curves is that given in figure 11. Then in this situation we
can prove the following

Proposition A.2. Assume that at t = t1 a Stokes curve of type 1 > 2 hits a simple ordinary
turning point s(t1) and that the Stokes curve of type 1 > 2 is not tangential at x = s(t1) to
any of the three Stokes curves emanating from s(t1). Then at t = t3, which is sufficiently
close to t = t1 and where the configuration of Stokes curves is that given in figure 11, two
Stokes curves, designated by dotted lines in figure 11, passing through cj = cj (t3)(j = 1, 2)

coincide.

Proof. Let N = N(t) denote the set of non-transversal points, i.e.,

N = {x; Im((ζ1(x) − ζ3(x))(ζ2(x) − ζ3(x))) = 0}. (A.9)
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To prove proposition A.2, we first investigate the local configuration of N near x = s(t) at
t = t1.

Since x = s(t1) is a simple turning point where ζ2(x) and ζ3(x) coalesce and ζ2(x)

(together with ζ3(x)) has a square-root-type singularity there, we readily find that N is a
curved ray emanating from s(t1) in a neighbourhood of s(t1). Furthermore, if we write the
Puiseux expansions of the characteristic roots ζj (x) at x = s(t1) as

ζ1(x) = a0 + a2(x − s(t1)) + · · · , (A.10)

ζ2(x) = b0 + b1(x − s(t1))
1/2 + b2(x − s(t1)) + · · · , (A.11)

ζ3(x) = b0 − b1(x − s(t1))
1/2 + b2(x − s(t1)) − · · · , (A.12)

the tangent vector s(t1) + r eiθN (0 < r 	 1) of N at x = s(t1) is determined by the following
equality:

Im((a0 − b0)b1 eiθN /2) = 0. (A.13)

That is, letting r0 eiθ0 and r1 eiθ1 respectively denote a0 −b0 and b1 (both of which are non-zero
complex numbers by the assumption), we obtain

θN ≡ 2(θ0 − θ1) (mod 2πZ). (A.14)

On the other hand, under these notations, at x = s(t1) the tangent vector s(t1) + r eiθ12

(0 < r 	 1) of the Stokes curve of type 1 > 2 hitting s(t1) and the tangent vector s(t1)+ r eiθ23

(0 < r 	 1) of the Stokes curves (of type (2, 3)) emanating from s(t1) are respectively given
by

θ12 ≡ −θ0,−θ0 + π (mod 2πZ), (A.15)

θ23 ≡ −2

3
θ1,−2

3
θ1 +

2π

3
,−2

3
θ1 +

4π

3
(mod 2πZ). (A.16)

Now let us investigate the relative location of the tangent vector s(t1) + r eiθN of N and the
tangent vectors s(t1)+ r eiθ12 and s(t1)+ r eiθ23 of the Stokes curves in question. If we introduce
a new angular variable θ̃ = θ + 2

3θ1, these tangent vectors are respectively given by

θ̃N ≡ −2θ̂ (mod 2πZ), (A.17)

θ̃12 ≡ θ̂ , θ̂ + π (mod 2πZ), (A.18)

θ̃23 ≡ 0,
2π

3
,

4π

3
(mod 2πZ), (A.19)

where θ̂ = 2
3θ1 − θ0, in terms of this new angular variable θ̃ . Here, without loss of generality,

we may assume 0 � θ̂ < π . Furthermore θ̂ �= k
3π (k ∈ Z) holds by the assumption. We can

then divide the problem into the following three cases:

0 < θ̂ <
π

3
,

π

3
< θ̂ <

2π

3
,

2π

3
< θ̂ < π, (A.20)

and, looking into the relative location of θ̃N , θ̃12 and θ̃23 in each case, we can confirm that
the local configuration of N and the Stokes curves in question near x = s(t1) is that given in
figure 12 in all cases. (In figure 12 the non-transversal set N (resp., a Stokes curve) is designated
by a thick line (resp., thin line).)

Hence, if t = t3 is sufficiently close to t = t1 and the configuration of Stokes curves at
t = t3 is that given in figure 11, all the assumptions of proposition A.1 are satisfied. Thus,
applying proposition A.1, we obtain the desired coincidence of the two Stokes curves at t = t3,
which completes the proof of proposition A.2. �
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Figure 12. Local (relative) configuration of N and the Stokes curves.

Appendix B. Expression of the phase function φ(t) with the help of virtual turning
points

As mentioned in the introduction, the phase function φ(t) of the instanton-type expansion
of the Painlevé transcendent [9] is given by an integral (0.9) whose endpoints are a double
ordinary turning point d and a simple ordinary turning point s of (SLIV) when the Lax pair
attached to (PIV) is given by (SLIV) and (DIV). When equations (2.3) and (2.4) are used as
another Lax pair underlying (PIV), we have found in section 2 that the ordinary turning points
corresponding to d and s in the case of (SLIV) are superseded by virtual turning points when
the parameter t lies in some portion of a Stokes curve for (PIV) in that the expected degeneracy
of the Stokes geometry of (2.3), which is drawn in x-space, is realized by connecting an
ordinary turning point and a virtual turning point of (2.3). Furthermore, the degeneracy is
realized by two pairs of an ordinary turning point and a virtual turning point at once. Thus an
analytically important question naturally arises: how are these virtual turning points related
to the phase function? The purpose of appendix B is to answer this question. The final results
are summarized in theorem B.1 at the end of appendix B.

Before stating the theorem let us recall some local properties of virtual turning points.
All the computations in [13] and [5] for locating virtual turning points are done on the local
properties described below. See [5] for the background of this analysis. To begin with, let
us concentrate our attention on a crossing point C of a Stokes curve γ1 of type (1, 2) that
emanates from a turning point τ1 and another Stokes curve γ2 of type (2, 3) that emanates
from a turning point τ2. Here τ1 and τ2 may be either virtual or ordinary. (When τ1 or τ2 is
a simple ordinary turning point, we need to introduce an appropriate cut to fix the branch of
the characteristic roots.) Then it follows from the definition that the bicharacteristic curves
passing through (x, y) = (τ1, 0) are given either by

y = −
∫ x

τ1

ξ1dx (B.1)

or

y = −
∫ x

τ1

ξ2 dx. (B.2)

Here and in what follows we normalize η to be 1 in equation (1.5).
Let y∗ denote

−
∫ x∗

τ1

ξ1 dx (B.3)
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and consider the following succession of journeys along bicharacteristic curves:
(i) Start from (x∗, y∗) and reach (τ1, 0) along the curve given by (B.1).
(ii) Continue the journey from (τ1, 0) to reach p = (

τ2,−
∫ τ2

τ1
ξ2dx

)
along the curve

defined by (B.2), i.e.,

y = −
∫ x

τ1

ξ2 dx = −
∫ x

τ2

ξ2 dx −
∫ τ2

τ1

ξ2 dx. (B.4)

(iii) Switch our journey to another bicharacteristic curve merging with the curve given by
(B.4) at p, that is, continue our journey along the bicharacteristic curve given by

y = −
∫ x

τ2

ξ3 dx −
∫ τ2

τ1

ξ2 dx. (B.5)

If we come back to our starting point (x∗, y∗) after these journeys, that is, if∫ x∗

τ1

ξ1 dx =
∫ τ2

τ1

ξ2 dx +
∫ x∗

τ2

ξ3 dx (B.6)

holds, then it follows from the definition that x∗ is a virtual turning point. We next consider
how this virtual turning point x∗ is related to the crossing point C of Stokes curves γ1 and γ2.
For this purpose let us consider the following integral I:

I =
∫ x∗

τ1

(ξ1 − ξ2) dx. (B.7)

It then follows from (B.6) that

I =
∫ τ2

τ1

ξ2 dx +
∫ x∗

τ2

ξ3 dx −
∫ x∗

τ1

ξ2 dx

=
∫ x∗

τ2

(ξ3 − ξ2) dx. (B.8)

Combining (B.7) and (B.8) we obtain∫ C

τ1

(ξ1 − ξ2) dx +
∫ x∗

C

(ξ1 − ξ2) dx =
∫ C

τ2

(ξ3 − ξ2) dx +
∫ x∗

C

(ξ3 − ξ2) dx. (B.9)

Hence we find ∫ x∗

C

(ξ1 − ξ3) dx =
∫ C

τ1

(ξ2 − ξ1) dx +
∫ C

τ2

(ξ3 − ξ2) dx. (B.10)

Since C is a crossing point of the Stokes curves γ1 and γ2, the imaginary part of the right-
hand side of (B.10) vanishes, and hence so does the imaginary part of the left-hand side.
This implies that C lies in the Stokes curve of type (1, 3) emanating from the virtual turning
point x∗. (Strictly speaking, we have to confirm, in addition, that C and x∗ belong to the
same connected component of the curve defined by Im

∫ x

x∗
(ξ1 − ξ3) dx = 0. This topological

condition, however, is easy to confirm in the computer-assisted study.) This geometric study
can be converted to another characterization of the virtual turning point in terms of the crossing
point C, which is the most convenient one in our analysis. For this purpose we consider a
curve γ defined by

Im
∫ x

C

(ξ1 − ξ3) dx = 0. (B.11)

Let ρ(x) denote

Re
∫ x

C

(ξ1 − ξ3) dx. (B.12)
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Figure 13. A small perturbation of figure 2(ii).

Then ρ(x) is, as the real part of a holomorphic function, monotonically decreasing or increasing
along the real one-dimensional curve γ . Hence we can normally (i.e., barring the exceptional
situation where ρ is bounded on γ ) locate a point x0 in γ where ρ(x) attains the real number∫ C

τ1

(ξ2 − ξ1) dx +
∫ C

τ2

(ξ3 − ξ2) dx. (B.13)

Then x0 satisfies∫ x0

C

(ξ1 − ξ3) dx =
∫ C

τ1

(ξ2 − ξ1) dx +
∫ C

τ2

(ξ3 − ξ2) dx. (B.14)

Comparing (B.10) and (B.14) we conclude that x0 and x∗ should coincide. Otherwise stated,
we can find a virtual turning point x∗ that satisfies the relation (B.15) below in our context:∫ x∗

C

(ξ1 − ξ3) dx =
∫ τ1

C

(ξ1 − ξ2) dx +
∫ τ2

C

(ξ2 − ξ3) dx. (B.15)

Since all the virtual turning points we use in our subsequent discussion, namely the virtual
turning points v1 and v2 introduced in section 2 and another virtual turning point v3 to be
used below, are located by this method, we regard (B.15) as the defining equation of a virtual
turning point in what follows. Since the integrands of the integrals considered below may be
assumed to be non-singular except for an endpoint (i.e., a simple ordinary turning point), we
slightly perturb the parameter t so that the degeneracy observed in figure 2(ii) becomes as is
described in figure 13. Here and in what follows τ1 is a double turning point and τ2 is a simple
turning point. We use a wiggly line to designate a cut attached to a simple turning point.
We then add virtual turning points v1, v2 and v3 to this dispersed figure to find figure 14; v1

and v2 are respectively slight perturbations of v1 and v2 in figure 3(ii) and the virtual turning
point v3 was omitted in figure 3(ii) for simplicity. In what follows the dotted line is used to
specify the portion of a Stokes curve which is inert concerning Stokes phenomena, although in
understanding the computation below the reader may ignore the difference between the dotted
line and the solid line. We also note that the virtual turning point v3 plays an important role in
relating several integrals discussed below.

Using (B.15) we find that the virtual turning points vj (j = 1, 2, 3) satisfy the following
relations, where Cj (j = 1, 2, 3) denotes the crossing point of Stokes curves designated in
figure 15.

∫ C1

v1

(ξ3 − ξ1) dx =
∫ C1

τ2

(ξ2 − ξ1) dx +
∫ C1

s2

(ξ3 − ξ2) dx, (B.16)
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Figure 14. Figure 13 with virtual turning points added.

Figure 15. Magnification of the portion enclosed by a square in figure 14.

∫ C2

v2

(ξ1 − ξ3) dx =
∫ C2

τ1

(ξ1 − ξ2) dx +
∫ C2

s2

(ξ2 − ξ3) dx, (B.17)

∫ C3

v3

(ξ3 − ξ2) dx =
∫ C3

τ1

(ξ1 − ξ2) dx +
∫ C3

v1

(ξ3 − ξ1) dx. (B.18)

Adding (B.17) and (B.16) we obtain∫ v2

v1

(ξ3 − ξ1) dx −
∫ C2

C1

(ξ3 − ξ1) dx

=
∫ τ1

τ2

(ξ2 − ξ1) dx −
∫ C2

C1

(ξ2 − ξ1) dx +
∫ C2

C1

(ξ2 − ξ3) dx, (B.19)

and hence ∫ v2

v1

(ξ3 − ξ1) dx =
∫ τ1

τ2

(ξ2 − ξ1) dx. (B.20)

Thus we have seen the integral corresponding to (0.9) is equal to an integral whose endpoints
are virtual turning points. Furthermore this integral is also equal to∫ v3

s2

(ξ2 − ξ3) dx. (B.21)

In fact, (B.16) entails∫ v1

τ2

ξ1 dx =
∫ s2

τ2

ξ2 dx +
∫ v1

s2

ξ3 dx, (B.22)
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Figure 16. A small perturbation of figure 2(i).

and (B.18) entails∫ v3

τ1

ξ2 dx =
∫ v1

τ1

ξ1 dx +
∫ s2

v1

ξ3 dx +
∫ v3

s2

ξ3 dx. (B.23)

Then, by combining (B.22) and (B.23), we find∫ v1

τ1

ξ1 dx +
∫ τ2

v1

ξ1 dx −
∫ v3

τ1

ξ2 dx +
∫ s2

τ2

ξ2 dx +
∫ v3

s2

ξ3 dx = 0, (B.24)

i.e., ∫ τ2

τ1

(ξ1 − ξ2) dx =
∫ v3

s2

(ξ2 − ξ3) dx. (B.25)

Next we disperse figure 2(i) by an appropriate small perturbation of t; then we obtain
figure 16. In figure 16 we see a tiny triangle formed by Stokes curves that is located close to
s2: let c01, c02 and c12 respectively designate the left, right-down and right-up vertex of the
triangle. Now let us consider the following sum J (x) of integrals:

J (x) =
∫ x

τ1

(ξ1 − ξ2) dx +
∫ x

τ2

(ξ3 − ξ1) dx +
∫ x

s2

(ξ2 − ξ3) dx. (B.26)

Since the derivative of J (x) vanishes identically, J (x) is actually a constant depending on the
parameter t. Furthermore, as we see below, J (c01) is equal to the integral of the form (B.21),
and we can also confirm

J (c12) =
∫ v1

τ1

(ξ1 − ξ2) dx (B.27)

and

J (c02) =
∫ v2

τ2

(ξ3 − ξ1) dx (B.28)

if virtual turning points v1, v2 and v3 added to figure 16. These virtual turning points are
deformations of corresponding ones in figure 14. In fact, by using (B.15), we find∫ c01

v3

(ξ3 − ξ2) dx =
∫ c01

τ1

(ξ1 − ξ2) dx +
∫ c01

τ2

(ξ3 − ξ1) dx (B.29)

etc. Hence we obtain

J (c01) =
∫ c01

v3

(ξ3 − ξ2) dx +
∫ c01

s2

(ξ2 − ξ3) dx =
∫ v3

s2

(ξ2 − ξ3) dx. (B.30)
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Relations (B.27) and (B.28) can be confirmed by the same reasoning. Thus we obtain the
following

Theorem B.1. (i) On a neighbourhood of the point t = t0, we find∫ τ2(t)

τ1(t)

(ξ1(x, t) − ξ2(x, t)) dx =
∫ v2(t)

v1(t)

(ξ3(x, t) − ξ1(x, t)) dx

=
∫ v3(t)

s2(t)

(ξ2(x, t) − ξ3(x, t)) dx. (B.31)

(ii) On a neighbourhood of the point t = t1, we find∫ v3(t)

s2(t)

(ξ2(x, t) − ξ3(x, t)) dt =
∫ v1(t)

τ1(t)

(ξ1(x, t) − ξ2(x, t)) dt

=
∫ v2(t)

τ2(t)

(ξ3(x, t) − ξ1(x, t)) dt. (B.32)

Remark B.1. (i) The first integral of (B.31) is known [9, 11] to coincide with the phase
function φ(t) in the instanton expansion of solutions near a turning point of the Painlevé
equation, or more generally, its higher order version (NY )l , the Noumi–Yamada system [12].
This representation of the phase function should be, however, replaced by one of the integrals
given in (B.32) near the point t = t1. An important fact to be noted here is that one of the
endpoints in each integral is a virtual turning point; virtual turning points are indispensable in
the exact WKB analysis of the Noumi–Yamada system.
(ii) It follows from (B.31) that

Im
∫ v2(t)

v1(t)

(ξ3(x, t) − ξ1(x, t)) dx = 0 (B.33)

when

Im
∫ τ2(t)

τ1(t)

(ξ1(x, t) − ξ2(x, t)) dx = 0. (B.34)

This explains why the virtual turning points v1(t) and v2(t) are connected by a Stokes segment
in figure 3(ii).
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